نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • نوع المحتوى
      نوع المحتوى
      امسح الكل
      نوع المحتوى
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • الناشر
    • المصدر
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
35,654 نتائج ل "Image classification"
صنف حسب:
Phishing detection using content based image classification
\"Phishing Detection using content-based image classification is an invaluable resource for any deep learning and cybersecurity professional and scholar trying to solve various cybersecurity tasks using new age technologies like Deep Learning and Computer Vision. With various rule-based phishing detection techniques at play which can be bypassed by phishers, this book provides a step-by-step approach to solve this problem using Computer Vision and Deep Learning techniques with significant accuracy. The book offers comprehensive coverage of the most essential topics, including: Programmatically reading and manipulating image data; Extracting relevant features from images; Building statistical models using image features; Using state of the art Deep Learning models for feature extraction; Build a robust phishing detection tool even with less data; Dimensionality reduction techniques; Class imbalance treatment; Feature Fusion techniques; Building performance metrics for multi-class classification task. Another unique aspect of this book is it comes with a completely reproducible code base developed by the author and shared via python notebooks for quick launch and running capabilities. They can be leveraged for further enhancing the provided models using new advancement in the field of computer vision and more advanced algorithms\"-- Provided by publisher.
Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network
Recent research has shown that using spectral-spatial information can considerably improve the performance of hyperspectral image (HSI) classification. HSI data is typically presented in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method for simultaneously extracting the spectral-spatial features within such images. In this paper, a 3D convolutional neural network (3D-CNN) framework is proposed for accurate HSI classification. The proposed method views the HSI cube data altogether without relying on any preprocessing or post-processing, extracting the deep spectral-spatial-combined features effectively. In addition, it requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less likely to over-fit, and easier to train. For comparison and validation, we test the proposed method along with three other deep learning-based HSI classification methods-namely, stacked autoencoder (SAE), deep brief network (DBN), and 2D-CNN-based methods-on three real-world HSI datasets captured by different sensors. Experimental results demonstrate that our 3D-CNN-based method outperforms these state-of-the-art methods and sets a new record.
Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning
Accurate automated medical image recognition, including classification and segmentation, is one of the most challenging tasks in medical image analysis. Recently, deep learning methods have achieved remarkable success in medical image classification and segmentation, clearly becoming the state-of-the-art methods. However, most of these methods are unable to provide uncertainty quantification (UQ) for their output, often being overconfident, which can lead to disastrous consequences. Bayesian Deep Learning (BDL) methods can be used to quantify uncertainty of traditional deep learning methods, and thus address this issue. We apply three uncertainty quantification methods to deal with uncertainty during skin cancer image classification. They are as follows: Monte Carlo (MC) dropout, Ensemble MC (EMC) dropout and Deep Ensemble (DE). To further resolve the remaining uncertainty after applying the MC, EMC and DE methods, we describe a novel hybrid dynamic BDL model, taking into account uncertainty, based on the Three-Way Decision (TWD) theory. The proposed dynamic model enables us to use different UQ methods and different deep neural networks in distinct classification phases. So, the elements of each phase can be adjusted according to the dataset under consideration. In this study, two best UQ methods (i.e., DE and EMC) are applied in two classification phases (the first and second phases) to analyze two well-known skin cancer datasets, preventing one from making overconfident decisions when it comes to diagnosing the disease. The accuracy and the F1-score of our final solution are, respectively, 88.95% and 89.00% for the first dataset, and 90.96% and 91.00% for the second dataset. Our results suggest that the proposed TWDBDL model can be used effectively at different stages of medical image analysis. •We proposed an uncertainty quantification-based model for skin cancer classification.•We applied three UQ methods: MC dropout, Ensemble MC dropout and DE.•A novel combination of Bayesian Deep Learning (BDL) methods based on three-way decision theory was considered.•Bayesian optimization (BO) was used to tune hyperparameters of BDL methods.•We obtained promising results using the proposed method.
Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study
Convolutional neural networks (CNN) are widely used in computer vision and medical image analysis as the state-of-the-art technique. In CNN, pooling layers are included mainly for downsampling the feature maps by aggregating features from local regions. Pooling can help CNN to learn invariant features and reduce computational complexity. Although the max and the average pooling are the widely used ones, various other pooling techniques are also proposed for different purposes, which include techniques to reduce overfitting, to capture higher-order information such as correlation between features, to capture spatial or structural information, etc. As not all of these pooling techniques are well-explored for medical image analysis, this paper provides a comprehensive review of various pooling techniques proposed in the literature of computer vision and medical image analysis. In addition, an extensive set of experiments are conducted to compare a selected set of pooling techniques on two different medical image classification problems, namely HEp-2 cells and diabetic retinopathy image classification. Experiments suggest that the most appropriate pooling mechanism for a particular classification task is related to the scale of the class-specific features with respect to the image size. As this is the first work focusing on pooling techniques for the application of medical image analysis, we believe that this review and the comparative study will provide a guideline to the choice of pooling mechanisms for various medical image analysis tasks. In addition, by carefully choosing the pooling operations with the standard ResNet architecture, we show new state-of-the-art results on both HEp-2 cells and diabetic retinopathy image datasets.
Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study
Efficiently implementing remote sensing image classification with high spatial resolution imagery can provide significant value in land use and land cover (LULC) classification. The new advances in remote sensing and deep learning technologies have facilitated the extraction of spatiotemporal information for LULC classification. Moreover, diverse disciplines of science, including remote sensing, have utilised tremendous improvements in image classification involving convolutional neural networks (CNNs) with transfer learning. In this study, instead of training CNNs from scratch, the transfer learning was applied to fine-tune pre-trained networks Visual Geometry Group (VGG16) and Wide Residual Networks (WRNs), by replacing the final layers with additional layers, for LULC classification using the red–green–blue version of the EuroSAT dataset. Moreover, the performance and computational time are compared and optimised with techniques such as early stopping, gradient clipping, adaptive learning rates, and data augmentation. The proposed approaches have addressed the limited-data problem, and very good accuracies were achieved. The results show that the proposed method based on WRNs outperformed the previous best results in terms of computational efficiency and accuracy, by achieving 99.17%.
A multi-resolution model for histopathology image classification and localization with multiple instance learning
Large numbers of histopathological images have been digitized into high resolution whole slide images, opening opportunities in developing computational image analysis tools to reduce pathologists' workload and potentially improve inter- and intra-observer agreement. Most previous work on whole slide image analysis has focused on classification or segmentation of small pre-selected regions-of-interest, which requires fine-grained annotation and is non-trivial to extend for large-scale whole slide analysis. In this paper, we proposed a multi-resolution multiple instance learning model that leverages saliency maps to detect suspicious regions for fine-grained grade prediction. Instead of relying on expensive region- or pixel-level annotations, our model can be trained end-to-end with only slide-level labels. The model is developed on a large-scale prostate biopsy dataset containing 20,229 slides from 830 patients. The model achieved 92.7% accuracy, 81.8% Cohen's Kappa for benign, low grade (i.e. Grade group 1) and high grade (i.e. Grade group ≥ 2) prediction, an area under the receiver operating characteristic curve (AUROC) of 98.2% and an average precision (AP) of 97.4% for differentiating malignant and benign slides. The model obtained an AUROC of 99.4% and an AP of 99.8% for cancer detection on an external dataset. [Display omitted] •A multi-resolution multiple instance learning model is developed for Gleason grade group classification.•The model can localize suspicious regions, and then classify cancer grade at a higher magnification with selected tiles.•The model doesn’t require fine-grained annotations and can be trained with slide-level labels from pathology reports.•The model was evaluated on a large independent test set and an external dataset, and achieved promising results.
A Review of Remote Sensing Image Classification Techniques: the Role of Spatio-contextual Information
This paper reviewed major remote sensing image classification techniques, including pixel-wise, sub-pixel-wise, and object-based image classification methods, and highlighted the importance of incorporating spatio-contextual information in remote sensing image classification. Further, this paper grouped spatio-contextual analysis techniques into three major categories, including 1) texture extraction, 2) Markov random fields (MRFs) modeling, and 3) image segmentation and object-based image analysis. Finally, this paper argued the necessity of developing geographic information analysis models for spatial-contextual classifications using two case studies.
Spectral-Spatial Attention Networks for Hyperspectral Image Classification
Many deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN), have been successfully applied to extracting deep features for hyperspectral tasks. Hyperspectral image classification allows distinguishing the characterization of land covers by utilizing their abundant information. Motivated by the attention mechanism of the human visual system, in this study, we propose a spectral-spatial attention network for hyperspectral image classification. In our method, RNN with attention can learn inner spectral correlations within a continuous spectrum, while CNN with attention is designed to focus on saliency features and spatial relevance between neighboring pixels in the spatial dimension. Experimental results demonstrate that our method can fully utilize the spectral and spatial information to obtain competitive performance.
Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification
This paper proposes a novel deep learning framework named bidirectional-convolutional long short term memory (Bi-CLSTM) network to automatically learn the spectral-spatial features from hyperspectral images (HSIs). In the network, the issue of spectral feature extraction is considered as a sequence learning problem, and a recurrent connection operator across the spectral domain is used to address it. Meanwhile, inspired from the widely used convolutional neural network (CNN), a convolution operator across the spatial domain is incorporated into the network to extract the spatial feature. In addition, to sufficiently capture the spectral information, a bidirectional recurrent connection is proposed. In the classification phase, the learned features are concatenated into a vector and fed to a Softmax classifier via a fully-connected operator. To validate the effectiveness of the proposed Bi-CLSTM framework, we compare it with six state-of-the-art methods, including the popular 3D-CNN model, on three widely used HSIs (i.e., Indian Pines, Pavia University, and Kennedy Space Center). The obtained results show that Bi-CLSTM can improve the classification performance by almost 1.5 % as compared to 3D-CNN.
A Survey on Contrastive Self-Supervised Learning
Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets. It is capable of adopting self-defined pseudolabels as supervision and use the learned representations for several downstream tasks. Specifically, contrastive learning has recently become a dominant component in self-supervised learning for computer vision, natural language processing (NLP), and other domains. It aims at embedding augmented versions of the same sample close to each other while trying to push away embeddings from different samples. This paper provides an extensive review of self-supervised methods that follow the contrastive approach. The work explains commonly used pretext tasks in a contrastive learning setup, followed by different architectures that have been proposed so far. Next, we present a performance comparison of different methods for multiple downstream tasks such as image classification, object detection, and action recognition. Finally, we conclude with the limitations of the current methods and the need for further techniques and future directions to make meaningful progress.